Skip to main content

Difference between EPUB and PDF file format



EPUB and PDF are both electronic book formats, but they have some key differences.

  • EPUB is an open standard format, while PDF is proprietary. This means that anyone can create an EPUB file, but PDF files are created using Adobe Acrobat.
  • EPUB is designed specifically for reflowable content, meaning the text can adjust to different screen sizes and font sizes. PDFs are designed for fixed layout content, meaning the layout of the document remains the same regardless of the device or screen size.
  • EPUB files are generally smaller in size than PDFs, making them more suitable for devices with limited storage space.
  • EPUB files can include interactive elements such as hyperlinks and embedded multimedia, while PDFs are primarily used for static documents.
  • EPUB files are more widely supported by e-readers and mobile devices, while PDFs are more commonly used for desktop and web-based applications.

 PDF (Portable Document Format) is a file format that was developed by Adobe Systems in the 1990s. Adobe owns the patents for the PDF format and has licensed the technology to other companies and organizations. This means that while Adobe owns the rights to the PDF format, other companies and organizations are able to create and use PDF files through licensing agreements with Adobe.


Additionally, the PDF format has been widely adopted and has become an open standard. This means that the format is widely used and has been implemented by many software developers and companies, even if they don't have a direct licensing agreement with Adobe.


So, other apps and software can generate PDFs by using the same technology, or by using open-source libraries that have been developed to support the creation of PDFs.





Comments

Popular posts from this blog

All about data analysis

  Data Analysis is the process of examining, cleaning, transforming, and modeling data to extract useful information, draw conclusions, and support decision-making. It involves a wide range of techniques and tools to collect, process, and interpret data, including statistical methods, machine learning, and visualization. The goal of data analysis is to turn raw data into actionable insights that can inform business decisions, improve operations, and drive innovation. Data collection is the first step in data analysis. This involves acquiring data from various sources, such as databases, surveys, and experiments. The data can be structured or unstructured, and it can be numerical or categorical. Once the data is collected, it must be cleaned and preprocessed to ensure that it is accurate and relevant. This process involves removing outliers, filling in missing values, and transforming the data into a format that is suitable for analysis. After the data is cleaned, it can be analyz...

SMART technique to ask question

  Data analysis এর একটি গুরুত্বপূর্ণ অংশ হলো data collection করা। Data collection process এর ৬ টি ধাপ আছে। এর মধ্যে একটি ধাপ হলো, "ASK"। এবং এই ধাপ এর একটি গুরুত্বপূর্ণ টেকনিক হলো "SMART QUESTION" এখানে key word হলো SMART যেখানে S => Specific M => Measurable A => Action Oriented R => Relevant T => Time-bound 1. Specific question বলতে বোঝায় কোন একটি বিষয়ে নির্দিষ্ট প্রশ্ন করা। যে প্রশ্নটি মূল সমস্যাকে তুলে ধরবে, এবং ডাটা এনালাইসিস এর জন্য প্রয়োজনীয় সব তথ্য এর উত্তর নিশ্চিত করবে। 2. Measrable question: Measurable question এমন সব প্রশ্নকে নির্দেশ করে যার উত্তরকে measurament/পরিমাপ করা যায়। একটা উদাহরন দেওয়া যাক, মনে করি সাম্প্রতিক কালের কোন একটি ভাইরাল ভিডিও নিয়ে যদি আমরা তথ্য সংগ্রহ করতে চাই সেক্ষেত্রে আমারা যদি প্রশ্ন করি "Why did a recent video go viral?" এক্ষত্রে আমরা একটী ব্যাখামূলক উত্তর পেতে পারি। সেক্ষেত্রে এই প্রশ্নের ধরন হবে unmeasurable. কিন্তু যদি এর বদলে আমরা প্রশ্ন করতাম "How many times was our video shared on social channels...

Data analysis, tools and analysis process

What is data analysis? Data analysis is the process of examining, cleaning, transforming, and modeling data with the goal of discovering useful information, drawing conclusions, and supporting decision-making. This can be done using a variety of techniques and tools, such as statistical analysis, machine learning, data visualization, and data mining. Data analysis is used in a wide range of fields, including business, finance, healthcare, and science, to extract insights from data and inform decision-making.